Math, asked by bhoomika1259, 1 month ago

The line segment AB is divided at P(1,1) internally in the ratio 5:2 and co ordinates of point B are (-1,-1) find the co ordinates of point A​

Answers

Answered by tpalak105
36

Step-by-step explanation:

P ( 1, 1 )

B (-1 , -1 )

Let A ( x,y)

P ( 5 (-1) + 2x /7 5 (-1) + 2y / 7

-5 + 2x / 7 = 1

2x = 7+5

x= 6

and

-5 +2y /7 = 1

2y = 7+5

y= 6

Point A have coordinates ( 6,6)

Hope it helps you

Answered by Anonymous
9

{\huge{\fcolorbox{black}{white}{\fcolorbox{black}{lightyellow}{\bf{\color{black}{Answer}}}}}}

GIVEN THAT:-

&#10155 The line segment AB is divided at P(1,1) internally in the ratio 5:2 and co ordinates of point B are (-1,-1)

FORMULA:-

&#10155 If a line segment AB { A ( x1,y1) and B ( x2,y2) } is divided at P point(x,y) internally in the ratio of m:n then the co ordinator of point p is

&#10152 \:  \: x = \:  \frac{n \times x1 + m \times x2}{m + n}  \\  \\ &#10152 \:  \: y  =  \frac{n \times y1 + m \times y2}{m + n}

SOLUTION;

&#10155 Line segment AB

coordinates of P = (1,1)

Ratio = 5:2

coordinates of Point B = (–1,–1)

Let Coordinate of point A = (x,y)

using the formula

x ordinate of point A

\implies \:  \: 1 =  \frac{2 \times x + 5( - 1)}{5 + 2}  \\  \\ \implies \:  \: 2x - 5 = 7 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \implies \:  \: 2x = 12 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \implies \:  \: x =  \frac{\cancel{12}}{\cancel2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \implies \:  \: x = 6 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

y ordinate of point A

\implies \:  \: 1 =  \frac{2 \times y + 5( - 1)}{5 + 2}  \\  \\ \implies \:  \: 2y - 5 = 7 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \implies \:  \: 2y  = 12 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \implies \:  \: y =  \frac{\cancel{12}}{\cancel2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \implies \:  \: y = 6 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now the coordinate of point A = (6,6)

Similar questions