The line segment joining points-3,-4and1,-2 is divided by y-axis inthe ratio
Answers
Answer:
Answer: The required ratio is 3 : 1.
Step-by-step explanation: We are given to find the ratio in which the line segment joining the points (-3, -4) and (1, -2) is divided by y axis.
Let m : n be the required ratio.
The point that divides the line segment joining the points (-3, -4) and (1, -2) is written as (0, t).
We know that
the co-ordinates of he point that divides the line joining the points (a, b) and (c, d) in the ratio m : n are given by
(\dfrac{mc+na}{m+n},\dfrac{md+nb}{m+n}).(
m+n
mc+na
,
m+n
md+nb
).
Therefore, according to the given information, we have
\begin{gathered}\dfrac{1\times m+(-3)\times n}{m+n}=0\\\\\Rightarrow m-3n=0\\\\\Rightarrow m=3n\\\\\Rightarrow \dfrac{m}{n}=\dfrac{3}{1}\\\\\Rightarrow m:n=3:1.\end{gathered}
m+n
1×m+(−3)×n
=0
⇒m−3n=0
⇒m=3n
⇒
n
m
=
1
3
⇒m:n=3:1.
Thus, the required ratio is 3 : 1.
Answer:
I'm not bro
I am girl... ...