Math, asked by aaradhana1610, 7 months ago

The line segment joining the point A(3,2)and B(5,1)is devided at a point p in the ratio 1:2initaly find the co- ordinate of 'p'​

Answers

Answered by VishnuPriya2801
28

Answer:-

Given:

The line segment joining the points A(3 , 2) , B(5 , 1) is divided at a point P internally in the ratio 1 : 2.

Using section formula;

If The line segment joining the points (x₁ , y₁) , (x₂ , y₂) is divided by the point P internally in the ratio m : n , then co - ordinates of point P are :

 \sf  \large \: p(x \: , \: y) =  \bigg( \dfrac{mx _{2}  + nx _{1} }{m + n}  \:  \:  \:  ,\: \dfrac{my _{2}  + ny _{1} }{m + n} \bigg)

Let,

  • m = 1

  • n = 2

  • x₁ = 3

  • y₁ = 2

  • x₂ = 5

  • y₂ = 1

Hence,

 \implies \sf \: (x \:   \:  ,\: \: y) = \bigg( \dfrac{(1)(5)  + (2)(3) }{1 + 2} \:  \: , \:  \:  \dfrac{(1)(1) + (2)(2)}{1 + 2}  \bigg) \\  \\ \implies \sf \: (x \:   \: , \: \: y) = \bigg( \dfrac{5 + 6 }{3} \:  \:  ,\:  \:  \dfrac{1 + 4}{3}  \bigg) \\  \\ \implies \boxed{ \sf \: (x \:  \: , \:  \: y) = \bigg( \dfrac{11}{3} \:  \: , \:  \:  \dfrac{5}{3}  \bigg)}

The co - ordinates of the point are (11/3 , 5/3)

Answered by Creepyboy95
48

   \tt \huge \underline{solution}

 \tt{Given \:  that \:  point \:  divides \:  the \: } \\  \tt{ line  \: segment  \: joining \:  the  \: points } \\  \tt{A \: (3,2)  \: and  \: B \: (5,1)  \: in  \: the \:  ratio \: } \\  \tt{ 1:2} </p><p>  \\  \tt {The \:  coordinate  \: of \:  P  \: is} , \\  \tt{By \:  section  \: formula}</p><p></p><p>

 \\  \tt{( \frac{mx2 + nx1}{m + n} \:  \:  \:  ,\frac{my2 + ny1}{m + n})  }

 \tt{here \: m :  n = 1 : 2 \: (x1 \: y1) = (3 \:  \:  \: 2)}

 \\  \tt{and \: (x2 \: y2) = (5 \:  \: 1)}

 \\  \tt{( \frac{1 \times 5 \ + 2\times 3}{1 + 2} \:  \:  \frac{1 \times 1  + 2 \times 2}{1 + 2} )  }

 \tt{ \:the \:  coordinate \: are\: }

 \\  \tt{ (\frac{11}{3}  \:  \:  \:  \:  \:  \frac{5}{3}) }

  \\ \tt{3 (\frac{11}{3}) - 18 (\frac{5}{3} ) + k =0 }

 \tt{k -19 = 0 \implies \: k = 19 }

Similar questions