Math, asked by tanisha12315, 4 months ago

The line segment PQ is parallel to side AC of triangle ABC and it divides the triangle into two equal parts. Find the ratio AP/AB.​

Answers

Answered by Anonymous
5

\huge\mathfrak\red{Disclaimer: }

Please do not report if the answer is wrong, we have tried our best to give you the correct answer}

__________________________

\huge\mathfrak\green{★ \: answer \:  \:  \:  \: ✎}

look at the pic..⊙.☉

__________________________

I hope you have helped with this answer.

____________________________

 \:  \:  \:  \: \sf \colorbox{gold} {\red(ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸}

Attachments:
Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{In \:  \triangle \: ABC} \\ &\sf{PQ \:  \parallel \: AC}  \\ &\sf{ar( \triangle \: ABC) \:  = 2 \: ar \: ( \triangle \: BPQ)} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{\dfrac{AP}{AB} }  \end{cases}\end{gathered}\end{gathered}

Concept Used

 \boxed{ \blue{\tt \:  Area \:  Ratio \:  Theorem }}

Theorem: If two triangles are similar, then the ratio of the area of both triangles is proportional to the square of the ratio of their corresponding sides.

\large\underline\purple{\bold{Solution :-  }}

☆ Now, Consider ️ ABC and ️ PBQ

\tt \:  ⟼  \angle \: BPQ \:  = \angle \: BAC \:  \: (corresponding \: angles)

\tt \:  ⟼ \angle \: ABC \:  =  \: \angle \: PBQ \:  \: (commom)

\tt\implies \: \boxed{ \purple{ \tt \:  \triangle \: ABC \:  \sim \:  \triangle \: PBQ}}

 \bf \:   \therefore \: by \: Area \:  Ratio \:  Theorem

\tt \:  \longrightarrow \: \dfrac{ar( \triangle \: PBQ)}{ar(\triangle \: ABC)}  = \dfrac{ {PB}^{2} }{ {AB}^{2} }

\tt \:  \longrightarrow \: \dfrac{ar( \triangle \: PBQ)}{2 ar(\triangle \: PBQ)}  = \dfrac{ {PB}^{2} }{ {AB}^{2} }

\tt \:  \longrightarrow \: \dfrac{1}{2}  = \dfrac{ {PB}^{2} }{ {AB}^{2} }

\tt \:  ⟼ \dfrac{PB}{AB}  = \dfrac{1}{ \sqrt{2} }

\tt \:  \longrightarrow \: \dfrac{AB - AP}{AB}  = \dfrac{1}{ \sqrt{2} }

\tt \:  \longrightarrow \: \dfrac{AB}{AB}  - \dfrac{AP}{AB}  = \dfrac{1}{ \sqrt{2} }

\tt \:  \longrightarrow \: 1 - \dfrac{AP}{AB}  = \dfrac{1}{ \sqrt{2} }

\tt \:  \longrightarrow \: \dfrac{AP}{AB}  =1 -  \dfrac{1}{ \sqrt{2} }

\tt\implies  \boxed{ \bf \purple{\:\dfrac{AP}{AB}  = \dfrac{ \sqrt{2} - 1 }{ \sqrt{2} }} }

Attachments:
Similar questions