Math, asked by rafsanrafi, 11 months ago

the line y=x+2 meets the curve y^2=4(2x+1) at A and B. Find the coordinates of the midpoint of AB​

Answers

Answered by rishabh1894041
5

Step-by-step explanation:

If \: y = x + 2 \: meets \: the \: curve \:  \\  {y}^{2}  = 4(2x + 1) \: then \: it \: will \: satisfy \:  \\ the \: curve. \\  = ( {x + 2)}^{2}  = 4(2x + 1) \\  =  {x}^{2}  + 4x + 4 = 8x + 4 \\  =  {x}^{2}  - 4x = 0 \\  = x(x - 4) = 0 \\ x = 0 \: 4 \\ when \: x = 0  \:, y = 2 \\  whenx = 4 \:, y = 6 \\  \\ Then \: two \: points \: A(0 \:, 2) \: and \: B(4 \:, 6) \\ mid \: point \: of \: ab = ( \frac{0 + 4}{2}  \:,  \frac{2 + 6}{2} ) \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = (2 \:, 4) \\  \\ Hope \: it \: will \: help \: you.

Similar questions