Physics, asked by RITUPORNA9239, 1 year ago

The linear magnification produced by a spherical mirror is -1/. analysing this value state th typical of sphere mirror and position of the object with respect to the power of the mirror

Answers

Answered by stuffin
7
the magnification is -1 therefore it should be cocave mirror
Answered by rakeshmohata
16
Hope u like my process
=====================
=> linear magnification is equal to the negative of the ratio of image distance to the object distance.

i.e.  \\  \:  \blue{\it\: linea   r \:  \: magnification} =  \bf -  \frac{image \:  \: distance}{object \:  \: distance}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \underline{ \bf -  \frac{v}{u} }
_________________________
In optics..

=> use of sign convention is necessary..

So,

For convex mirror,
=-=-=-=-=-=-=-=-=-=-=
=> image distance (v) = (+) ve

=> object distance(u) = (-) ve

 =  > its \:  \: linear \:  \: magnification =  -  \bf \frac{( + v)}{( - u)}  =  \underline{ \frac{v}{u} }


For concave mirror,
=-=-=-=-=-=-=-=-=-=-=-=
=> image distance(v) = (-) ve

=> object distance(u) = (-) ve

 =  > its \:  \: linear \:  \: magnification =   \bf-  \frac{( - v)}{( - u)}  =   \underline{ - \frac{v}{u} }

________________________
Now,
=-=-=-=
Given data:
¯¯¯¯¯¯¯¯¯¯¯¯¯¯
=> linear magnification = - 1

So,

The linear magnification is (-)ve in concave mirror and hence concave mirror is used.
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

Now the magnitude of the magnification is 1.. So the object and image distance are same.

Image formation for concave be like

 \green{ \bf  \underline{\: object \:  \: distance} \:  \:  \:   \underline{\: image \:  \: distance}} \\  \\ \blue{ \:  \:  \:  \:  \:  \:  \:  \:  \:  focus (f)\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: infinity }\\  \\ \blue{ \:  \:  \:  \:   \:  \:  \:  \:  \: \: infinity \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: focus(f)} \\  \\   \blue{\:  \:  \:  \:  \:  \:  \:  \: radius (2f) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: radius(2f) }\\  \\ \blue{  \:  \:  \:  \: \:  \: pole  < x < f\:     \:  \:  \:  \:  \:  \:focus < x < 2f} \\  \\  \blue{ \:  \:  \:focus < x < 2f \:  \:  \:  \:  \:  \: \:  \: pole  < x < f\: \: }


Thus the distance is same when object is placed at 2f(radius of curvature).

Thus the required answer is

Concave mirror is used with the object placed at a distance of 2f.
______________________________
Hope this is ur required answer

Proud to help you

Attachments:
Similar questions