The linear polynomial ax +b, a not equal to 0, has exactly one zero, namely, the x-coordinate of the point where the graph of y= ax b intersects the _
Answers
Step-by-step explanation:
FIGURE IS IN THE ATTACHMENT]
Given:
In ∆ PQR, PR²-PQ²= QR² & QM ⊥ PR
To Prove: QM² = PM × MR
Proof:
Since, PR² - PQ²= QR²
PR² = PQ² + QR²
So, ∆ PQR is a right angled triangle at Q.
In ∆ QMR & ∆PMQ
∠QMR = ∠PMQ [ Each 90°]
∠MQR = ∠QPM [each equal to (90°- ∠R)]
∆ QMR ~ ∆PMQ [ by AA similarity criterion]
By property of area of similar triangles,
ar(∆ QMR ) / ar(∆PMQ)= QM²/PM²
1/2× MR × QM / ½ × PM ×QM = QM²/PM²
[ Area of triangle= ½ base × height]
MR / PM = QM²/PM²
QM² × PM = PM² × MR
QM² =( PM² × MR)/ PM
QM² = PM × MR
HOPE THIS WILL HELP YOU...
4.9
Read more on Brainly.in - https://brainly.in/question/2556091#readmore
Answer:
Step-by-step explanation:
By pradosh.G
Given:
In ∆ PQR, PR²-PQ²= QR² & QM ⊥ PR
To Prove: QM² = PM × MR
Proof:
Since, PR² - PQ²= QR²
PR² = PQ² + QR²
So, ∆ PQR is a right angled triangle at Q.
In ∆ QMR & ∆PMQ
∠QMR = ∠PMQ [ Each 90°]
∠MQR = ∠QPM [each equal to (90°- ∠R)]..
∆ QMR ~ ∆PMQ [ by AA similarity criterion]
By property of area of similar triangles,..
ar(∆ QMR ) / ar(∆PMQ)= QM²/PM²
1/2× MR × QM / ½ × PM ×QM = QM²/PM²
[ Area of triangle= ½ base × height]
MR / PM = QM²/PM²
QM² × PM = PM² × MR
QM² =( PM² × MR)/ PM
QM² = PM × MR