Math, asked by niranjangupta48, 11 months ago

The linear polynomial ax +b, a not equal to 0, has exactly one zero, namely, the x-coordinate of the point where the graph of y= ax b intersects the _

Answers

Answered by tanu5569
0

Step-by-step explanation:

FIGURE IS IN THE ATTACHMENT]

Given:

In ∆ PQR, PR²-PQ²= QR² & QM ⊥ PR

To Prove: QM² = PM × MR

Proof:

Since, PR² - PQ²= QR²

PR² = PQ² + QR²

So, ∆ PQR is a right angled triangle at Q.

In ∆ QMR & ∆PMQ

∠QMR = ∠PMQ [ Each 90°]

∠MQR = ∠QPM [each equal to (90°- ∠R)]

∆ QMR ~ ∆PMQ [ by AA similarity criterion]

By property of area of similar triangles,

ar(∆ QMR ) / ar(∆PMQ)= QM²/PM²

1/2× MR × QM / ½ × PM ×QM = QM²/PM²

[ Area of triangle= ½ base × height]

MR / PM = QM²/PM²

QM² × PM = PM² × MR

QM² =( PM² × MR)/ PM

QM² = PM × MR

HOPE THIS WILL HELP YOU...

4.9

Read more on Brainly.in - https://brainly.in/question/2556091#readmore

Answered by pradosh006
0

Answer:

Step-by-step explanation:

By pradosh.G

Given:

In ∆ PQR, PR²-PQ²= QR² & QM ⊥ PR

To Prove: QM² = PM × MR

Proof:

Since, PR² - PQ²= QR²

PR² = PQ² + QR²

So, ∆ PQR is a right angled triangle at Q.

In ∆ QMR & ∆PMQ

∠QMR = ∠PMQ [ Each 90°]

∠MQR = ∠QPM [each equal to (90°- ∠R)]..

∆ QMR ~ ∆PMQ [ by AA similarity criterion]

By property of area of similar triangles,..

ar(∆ QMR ) / ar(∆PMQ)= QM²/PM²

1/2× MR × QM / ½ × PM ×QM = QM²/PM²

[ Area of triangle= ½ base × height]

MR / PM = QM²/PM²

QM² × PM = PM² × MR

QM² =( PM² × MR)/ PM

QM² = PM × MR

Similar questions