The linear relation between ā= -3I - 2j - 4k b=i +i -2k,c = 2i + j+ 3k is
Answers
Answered by
0
Step-by-step explanation:
clear out the question ok
Answered by
0
Given: The vectors ā= -3i - 2j - 4k , b=i +j -2k and
c = 2i + j+ 3k
To find: Linear relation between them
Solution: For finding the relation between these three vectors,
Let a = kb + tc --- equation (i)
where k and c are any constants.
Therefore, putting values of vectors:
-3i - 2j - 4k = k(i +j -2k) + t(2i + j+ 3k)
Equating vector i,
-3 = k+2t --- equation (ii)
Equating vector j,
-2 = k +t ----equation (iii)
Subtracting equation (iii) from equation (ii):
-3-(-2) = k+2t-(k+t)
=> -3+2 = k+2t-k-t
=> -1 = t
Putting t= -1 in Equation (iii),
-2 = k -1
=> k = -2+1
=> k = -1
Putting k=t= -1 in Equation (i)
a = -1(b) -1(c)
=> a = -b-c
=> a + b +c = 0
Therefore, the linear relation between them is a+b+c=0.
Similar questions