Math, asked by ramakrishnaperi628, 8 months ago

The locus of centroid of triangle with vertices a t a t b t b t cos , sin , sin , cos     and (1,0) where ‘t’ is

parameter is​

Answers

Answered by Swarup1998
7

Given:

  • Vertices of the triangle are (a\:cost,a\:sint), (b\:sint,\:-b\:cost) and (1,0)

To find: the locus of the centroid

Formula:

We know that if (x_{1},y_{1}), (x_{2},y_{2}) and (x_{3},y_{3}) be the vertices of a triangle, then the coordinates of its centroid be

\quad \left(\dfrac{x_{1}+x_{2}+x_{3}}{3},\:\dfrac{y_{1}+y_{2}+y_{3}}{3}\right)

Solution:

Using the above formula, we find the centroid of the given triangle:

\quad \left(\dfrac{a\:cost+b\:sint+1}{3},\:\dfrac{a\:sint-b\:cost}{3}\right)

Let us take:

  • x=\dfrac{a\:cost+b\:sint+1}{3}

  • \Rightarrow 3x-1=a\:cost+b\:sint .....(1)

  • and y=\dfrac{a\:sint-b\:cost}{3}

  • \Rightarrow 3y=a\:sint-b\:cost .....(2)

We can find the locus of the centroid of the given triangle in x,y when the perimeter 't' is removed. This can be done by squaring and adding (1) and (2); we write:

\quad (3x-1)^{2}+(3y)^{2}\\=a^{2}cos^{2}t+2ab\:sint\:cost+b^{2}sin^{2}t\\+a^{2}sin^{2}t-2ab\:sint\:cost+b^{2}cos^{2}t

\Rightarrow (3x-1)^{2}+(3y)^{2}\\=a^{2}(cos^{2}t+sin^{2}t)+b^{2}(sin^{2}t+cos^{2}t)

\Rightarrow (3x-1)^{2}+(3y)^{2}=a^{2}+b^{2}

Answer:

\quad The required locus is given by

(3x-1)^{2}+(3y)^{2}=a^{2}+b^{2}

Similar questions