The locus of the point (sec theta + tan theta),(sec theta- tan theta)
Answers
Answered by
3
Given:
(sec theta + tan theta),(sec theta- tan theta)
To find:
The locus of the point (sec theta + tan theta),(sec theta- tan theta)
Solution:
From given, we have,
(sec theta + tan theta),(sec theta- tan theta)
Let,
h = (sec theta + tan theta) and k = (sec theta- tan theta)
multiply both the equations, we get,
h × k = (sec theta + tan theta) × (sec theta- tan theta)
h × k = sec² theta - sec theta × tan theta + sec theta × tan theta - tan² theta
h × k = sec² theta - tan² theta
using the trigonometric functions property, we have,
h × k = 1
⇒ x × y = 1
Therefore, the locus of the point (sec theta + tan theta),(sec theta- tan theta) is xy = 1.
Answered by
1
Answer:
Step-by-step explanation:
Similar questions