The locus of the point x = a cos 0, y = b sino is
Answers
Answered by
1
Answer:
Step-by-step explanation:
It is given that
x=a(cosθ+sinθ)
y=b(cosθ−sinθ)
Now bx=ab(cosθ+sinθ) ...(i)
ay=ab(cosθ−sinθ) ...(ii)
Hence, b
2
x
2
+a
2
y
2
=a
2 b 2 (cos 2 θ+sin 2 θ+2cosθsinθ+cos 2 θ+sin 2 θ−2cosθsinθ) =a 2 b 2 (2(cos 2 θ+sin 2 θ)) =2a 2 b 2
Hence, b 2 x 2 +a 2 y 2 =2a 2 b 2
Dividing the entire equation by a
2 b 2
gives us
a 2 x 2 +
b
2
y
2
=2
Similar questions