The locus of the point x = sin e + cose, y = sin . cose is
a) x² + y² = 1
b) x² = 1 + 2y
c) xy =1
d) 2√xy = 1
plss ans with solutions
Answers
Answered by
0
Answer:
please make me as Brainlist please
Step-by-step explanation:
Let the mid point be S(h,k)
∴P(2h,0) and Q(0,2k)
equation of PQ:
2h
x
+
2k
y
=1
∵ PQ is tangent to circle at R(say)
∴ OR=1⇒
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
(
2h
1
)
2
+(
2k
1
)
2
−1
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
=1
⇒
4h
2
1
+
4k
2
1
=1
⇒x
2
+y
2
−4x
2
y
2
=0
Aliter:
tangent to circle
xcosθ+ysinθ=1
P:(secθ,0)
Q:(0,cosecθ)
2h=secθ⇒cosθ=
2h
1
& sinθ=
2k
1
(2x)
2
1
+
(2y)
2
1
=1.
Similar questions