Math, asked by dharmeshsasikiran, 1 month ago

The locus of z satisfying
 |z + 2i  \div 2z + i|
<1 where z=x+iy is

Answers

Answered by snehalojha19
0

Step-by-step explanation:

Given |(z+2i)/(2z+i)|<1

z = x+iy

So |x+iy+2i |/ |2(x+iy)+i | <1

|x+i(y+2) |/ |2x+(2y+1)i | <1

|x+i(y+2) |/<|2x+(2y+1)i | 

√(x2+(2+y)2)< √((2x)2+(2y+1)2)

Squaring both sides of the equation, we get

x2+4+y2+4y <4x2+4y2+4y+1

3x2+3y2 > 3

Divide by 3

x2+y2>1 which is the required locus.

Hence option (3) is the answer

Answered by ZaraAntisera
0

Answer:

\left|\frac{z+2i}{2z+i}\right|=\sqrt{\frac{z^2+4}{4z^2+1}}

Step-by-step explanation:

\mathrm{\left|\frac{z+2i}{2z+i}\right|}

\mathrm{Apply\:absolute\:rule}:\quad \left|\frac{a}{b}\right|\:=\frac{\left|a\right|}{\left|b\right|}

=\frac{\left|z+2i\right|}{\left|2z+i\right|}

\left|a+bi\right|\:=\sqrt{\left(a+bi\right)\left(a-bi\right)}=\sqrt{a^2+b^2}

=\frac{\left|z+2i\right|}{\sqrt{\left(2z\right)^2+1^2}}

=\frac{\left|z+2i\right|}{\sqrt{4z^2+1}}

\left|a+bi\right|\:=\sqrt{\left(a+bi\right)\left(a-bi\right)}=\sqrt{a^2+b^2}

\mathrm{With\:}a=z,\:b=2

=\frac{\sqrt{z^2+2^2}}{\sqrt{4z^2+1}}

\frac{\sqrt{z^2+4}}{\sqrt{4z^2+1}}

\mathrm{Combine\:same\:powers}\::\quad \frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}}

=\sqrt{\frac{z^2+4}{4z^2+1}}

Similar questions