Math, asked by vinayakamgoundar, 10 months ago

The logistic growth model formula is given by
ye^k^t +Ay=Le^k^t


where y is the population at time t (t\geq 0) and A, k and L are positive constants. Use implicit differentiation to verify that
A)\frac{dy}{dt} = \frac{k}{L} y(L-y)
B)\frac{d^2}{dt^2} =\frac{k^2}{L^2} y(L-y)(L-2y)

Answers

Answered by amitnrw
0

Given :   ye^{kt} + Ay = Le^{kt}

To find:    dy/dt   = (ky/L)(L -  y)   , d^2y/dt^2   =     (k^2/L^2) y(L -y)( L - 2y)  

Solution:

ye^{kt} + Ay = Le^{kt}

=> y(e^{kt} + A) = Le^{kt}

on Differentiating wrt x

(dy/dt)(e^{kt} + A)  + y(ke^{kt}) = kLe^{kt}

=> (dy/dt)(e^{kt} + A)   = kLe^{kt} -   y(ke^{kt})

=> (dy/dt)(e^{kt} + A)   = ke^{kt} (L -  y)

y(e^{kt} + A) = Le^{kt}  

=> (e^{kt} + A) = Le^{kt}/y

Substituting  (e^{kt} + A) = Le^{kt}/y  

=>(dy/dt)(Le^{kt}/y)   = ke^{kt} (L -  y)  

Cancelling e^{kt}  from both sides

=> (dy/dt)(L/y)   = ke^{kt} (L -  y)  

=> dy/dt   = (ky/L)(L -  y)  

QED

Hence Proved

dy/dt   = (ky/L)(L -  y)  

=> d^2y/dt^2   = (ky/L)(- dy/dt)  + (k/L)(dy/dt)(L - y)\\  

=> d^2y/dt^2   =     (k/L)(dy/dt) (-y + L - y)  

=> d^2y/dt^2   =     (k/L)(dy/dt) ( L - 2y)  

Substitute dy/dt   = (ky/L)(L -  y)  

=> d^2y/dt^2   =     (k/L) (ky/L)(L -y)( L - 2y)  

=> d^2y/dt^2   =     (k^2/L^2) y(L -y)( L - 2y)  

QED

Hence Proved

Learn More:

Find dy/dx , if x=cos^-1(2t/1+t^2), y=sec^-1(√1+t^2) (Derivartive of ...

https://brainly.in/question/17539997

Y=t²+t³ and x=t-t⁴ the. Find d²y/dx² - Brainly.in

https://brainly.in/question/17452182

Similar questions