Math, asked by pksgod007, 1 month ago

The longest side of a triangle is three times the shortest side and the third side is three 3 cm.
shorter than the longest side. If the perimeter of the triangle is atleast 67cm. , find the
minimum length of the shortest side.

Answers

Answered by timilsenasantosh64
1

Step-by-step explanation:

here is the answer.hope it will help u

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

The longest side of a triangle is three times the shortest side and the third side is three 3 cm shorter than the longest side.

So,

\begin{gathered}\begin{gathered}\bf\: Let \: assume \: that-\begin{cases} &\sf{shortest \: side = x \: cm} \\ \\  &\sf{longest \: side = 3x \: cm}\\ \\  &\sf{third \:side = 3x - 3 } \end{cases}\end{gathered}\end{gathered}

According to statement,

The perimeter of triangle is atleast 67 cm.

It means,

Sum of three sides of a triangle is atleast 67 cm

\rm :\longmapsto\:x + 3x + 3x - 3 \geqslant 67

\rm :\longmapsto\:7x - 3 \geqslant 67

On adding 3, on both sides, we get

\rm :\longmapsto\:7x - 3  + 3\geqslant 67 + 3

\rm :\longmapsto\:7x \geqslant 70

\bf\implies \:x \geqslant \dfrac{70}{7}

\bf\implies \:x \geqslant 10 \:

\bf\implies \:Minimum \: length \: of \: shortest \: side \:  =  \: 10 \: cm

Additional Information :-

 \boxed{ \bf{ \:  |x| < y\bf\implies \: - y < x < y}}

 \boxed{ \bf{ \:  |x|  \leqslant  y\bf\implies \: - y  \leqslant  x  \leqslant  y}}

 \boxed{ \bf{ \:  |x| > y \: \bf\implies \:x <  - y \:  \: or \:  \: x > y}}

 \boxed{ \bf{ \:  |x|  \geqslant  y \: \bf\implies \:x  \leqslant   - y \:  \: or \:  \: x  \geqslant  y}}

 \boxed{ \bf{ \: x >  - y \: \bf\implies \: - x < y}}

 \boxed{ \bf{ \: x  <   - y \: \bf\implies \: - x  >  y}}

 \boxed{ \bf{ \: x   \geqslant    - y \: \bf\implies \: - x   \leqslant   y}}

 \boxed{ \bf{ \: x   \leqslant    - y \: \bf\implies \: - x   \geqslant   y}}

Similar questions