Math, asked by Sarfarazahmad9265, 9 months ago

The LSA of right circular cylinder is 448cm2 and the radius of circular bases is 7cm find out volume of cylinder

Answers

Answered by CaptainBrainly
34

GIVEN:

LSA of right circular cylinder = 448cm²

The radius of circular base = 7cm

TO FIND:

The volume of cylinder

SOLUTION:

We know that,

LSA of the cylinder = 2πrh

According to the problem,

==> 2πrh = 448

==> 2 × 22/7 × 7 × h = 448

==> 44h = 448

==> h = 448/44

==> 10.18cm

Volume of the cylinder = πr²h

= 22/7 × 7² × 10.18

= 22 × 7 × 10.18

= 1,567.72cm³

The volume of cylinder is 1,567.72cm³

Answered by Anonymous
8

\bold\red{\underline{\underline{Answer:}}}

\bold{Volume \ of \ cylinder \ is \ 1568 \ cm^{3}}

\bold\orange{Given:}

\bold{For \ right \ circular \ cylinder,}

\bold{=>Lateral \ surface \ area=448 \ cm^{2}}

\bold{=>Radius(r)=7 \ cm}

\bold\pink{To \ find:}

\bold{Volume \ of \ cylinder.}

\bold\green{\underline{\underline{Solution}}}

\bold{Let \ height \ be \ h.}

\bold{Lateral \ surface \ area \ of \ cylinder}

\bold{=2×\pi×r×h}

\bold{\tt{\therefore{2×\pi×r×h=448}}}

\bold{\pi×r×h=\frac{448}{2}}

\bold{\pi×r×h=224...(1)}

___________________________

\bold{Volume \ of \ cylinder=\pi×r^{2}×h}

\bold{=(\pi×r×h)×r}

\bold{From \ (1)}

\bold{=224×7}

\bold{=1568 \ cm^{3}}

\bold\purple{\tt{\therefore{Volume \ of \ cylinder \ is \ 1568 \ cm^{3}}}}

Similar questions