Physics, asked by devapilani, 5 months ago

The magnetic field B at a large distance a on the axis of a current carrying circular coil of small radius depends as-
कम त्रिज्या की धारावाही वृत्तीय कुण्डली के अक्ष पर चुम्बकीय क्षेत्र B अत्यधिक दूरी a पर किसके अनुसार निर्भर करता है-
O (A) Bas
1
O (B) Box
as
O (C) Baal
1
O (D) Br
a2​

Answers

Answered by nirman95
6

To find:

The magnetic field intensity on the axis of the circular coil ?

Calculation:

According to Biot-Savart's Law:

 \displaystyle \therefore \: B =  \int \: dB

 \displaystyle \implies \: B =  \int \:  \dfrac{   \mu_{0}}{4\pi}  \times  \frac{I\:dl \:  \sin( \alpha ) }{ {r}^{2} }

 \displaystyle \implies \: B =  \int \:  \dfrac{   \mu_{0}}{4\pi}  \times  \frac{I\:dl  }{ {r}^{2} }  \times  \frac{R}{r}

 \displaystyle \implies \: B =  \int \:  \dfrac{   \mu_{0}}{4\pi}  \times  \frac{IR \times dl    }{ {r}^{3} }

 \displaystyle \implies \: B =    \dfrac{   \mu_{0}}{4\pi}  \times  \frac{IR  }{ {r}^{3} }  \times  \int dl

 \displaystyle \implies \: B =    \dfrac{   \mu_{0}}{4\pi}  \times  \frac{IR  }{ {r}^{3} }  \times (2\pi R)

 \displaystyle \implies \: B =    \dfrac{   \mu_{0}}{4\pi}  \times  \frac{IR  }{ {( \sqrt{ {x}^{2} +  {R}^{2}  }) }^{3} }  \times (2\pi R)

 \displaystyle \implies \: B =    \dfrac{   \mu_{0}}{4\pi}  \times  \frac{2\pi I{R}^{2} }{ {( \sqrt{ {x}^{2} +  {R}^{2}  }) }^{3} }

 \displaystyle \implies \: B =    \dfrac{   \mu_{0}}{4\pi}  \times  \frac{2\pi I{R}^{2} }{ {({x}^{2} +  {R}^{2} )}^{ \frac{3}{2} } }

For x >> R :

 \displaystyle \implies \: B =    \dfrac{   \mu_{0}}{4\pi}  \times  \frac{2\pi I{R}^{2} }{ {({x}^{2} )}^{ \frac{3}{2} } }

 \displaystyle \implies \: B =    \dfrac{   \mu_{0}}{4\pi}  \times  \frac{2\pi I{R}^{2} }{ {x}^{3} }

So, final answer is:

 \boxed{ \bf  \: B =    \dfrac{   \mu_{0}}{4\pi}  \times  \frac{2\pi I{R}^{2} }{ {x}^{3} }  }

Attachments:
Similar questions