Physics, asked by rewantdumbhare2375, 9 months ago

The magnetic field of an electromagnetic wave is given by:
⃗B = 1.6 ×10⁻⁶ cos (2 × 10⁷z + 6 × 10¹⁵ t)(2î + jˆ)Wb/2²
The associated electric field will be:
(A) ⃗E = 4.8 ×10² cos (2 × 10⁷z + 6 × 10¹⁵ t)(-î + 2jˆ)V/m
(B) ⃗E = 4.8 ×10² cos (2 × 10⁷z + 6 × 10¹⁵ t)(-2jˆ + 2tˆ)V/m
(C) ⃗E = 4.8 ×10² cos (2 × 10⁷z + 6 × 10¹⁵ t)(î + 2jˆ)V/m
(D) ⃗E = 4.8 ×10² cos (2 × 10⁷z + 6 × 10¹⁵ t)(2î + jˆ)V/m

Answers

Answered by shailendra7249
2

Answer:

correct answer c

Explanation:

I it's help u

Answered by minku8906
2

The associated electric field is given by\vec E = 4.8 \times 10^{2} \cos (2 \times 10^{7}z + 6 \times 10^{15}t  ) (-\vec i + 2 \vec j) \frac{V}{m}

Option (A) is correct.

Explanation:

Given :

Magnetic field  \vec B = 1.6 \times 10^{-6} \cos (2 \times 10^{7}z + 6 \times 10^{15}t  )  (2 \vec i +\vec j)

We know that the electromagnetic waves is transverse wave means amplitude of waves is perpendicular to the direction of propagation.

\vec E\vec B and both are ⊥ \vec n.

Where \vec n = propagation vector.

In our case, wave propagate in (- z) direction means -\vec k direction.

From EM-waves theory,

  \vec E = -c ( \vec n \times  \vec B)

Where c = 3 \times 10^{8}

 \vec E = 4.8 \times 10^{2} \cos (2 \times 10^{7}z + 6 \times 10^{15}t  ) [ \vec k  \times (2 \vec i+ \vec j)]

Since \vec k \times 2 \vec i = 2 \vec j and \vec k \times \vec j = - \vec i

So we can write

 \vec E = 4.8 \times 10^{2} \cos (2 \times 10^{7}z + 6 \times 10^{15}t  ) (-\vec i + 2 \vec j) \frac{V}{m}

Similar questions