Physics, asked by BibekAgarwal2033, 1 year ago

The magnetic moment of a short bar magnet is 2Am2. The magnetic field at a point 1m away from it in a direction making an angle 60 degree with its magnetic moment is

Answers

Answered by AJAYMAHICH
71
Magnetic field due to a bar magnet of magnetic dipole moment M at a distance r from it in a direction θ with its magnetic moment is given by

B = (μ0/(4π)). (M/r3). (3cos2θ + 1)½.

μ0/(4π) = 10−7 T.m/A,

M = 2 A m2, 

r = 1 m

θ = 60°

Substituting all the above values in the expression for B, we get

B = (10−7 T.m/A) x (2 A m2 / 1 m3 ) (3/4 + 1)½.

   = √7  x  10−7  T.
Answered by talasilavijaya
0

Answer:

The magnetic field at a point 1m distance in a direction 60°  with magnetic moment is \sqrt{7}\times10^{-7} T .

Explanation:

Given the magnetic moment of a short bar magnet, M= 2A.m^{2}

         distance of a point, r= 1m

         angle between magnetic field and magnetic moment is 60°

The net magnetic field due to a magnetic dipole moment M at a distance r from it in a direction θ with its magnetic moment is

                                  B =\frac{\mu_{0} }{4\pi }  \frac{M}{r^{3} } \sqrt{ 3cos^{2} \theta+1 }

Substituting, \frac{\mu_{0} }{4\pi } =10^{-7} \frac{T.m}{A}

        magnetic field, B =10^{-7}\times \frac{2}{1^{3} } \times \sqrt{ 3cos^{2} 60^{o} +1 }

                                      =10^{-7}\times 2\times \sqrt{ 3(\frac{1}{2} )^{2}  +1 }

                                      =10^{-7}\times 2\times \sqrt{ \frac{7}{4} }

                                      =10^{-7}\times 2\times\frac{\sqrt{7} }{2} }=\sqrt{7}\times10^{-7} T

Hence, the magnetic field due to a magnetic dipole moment at 1m is   \sqrt{7}\times10^{-7} T

Similar questions