Physics, asked by Akhiljiwanmall01, 1 year ago

The magnitude of acceleration of a point on the
wheel's rim at t = 1 s, whose radius is 2 m and
is spinning with angular velocity a that varies with
time as a = 10 t2 rad/s, is
(1) 40root26 m/s2
(2) 40 m/s2
(3) Zero
(4) 20 m/s2​

Answers

Answered by Ashmita1211
22

Answer: 1) 40√26 m/s^2

Explanation:

Attachments:
Answered by CarliReifsteck
3

The magnitude of acceleration of a point on the  wheel's rim is 40\sqrt{26}\ m/s^2

Option (1)

Explanation:

Given that,

Time t = 1

Radius = 2 m

Angular velocity \omega= a

Here, a =10t^2

We need to calculate the angular acceleration

Using formula of angular acceleration

\alpha=\dfrac{dw}{dt}

\alpha=\dfrac{d}{dt}(10t^2)

\alpha=20t

At t = 1,

\alpha=20\ m/s^2

We need to calculate the tangential acceleration

Using formula of tangential acceleration

a_{t}=\alpha r

Put the value into the formula

a_{t}=20\times2

a_{t}=40\ m/s^2

We need to calculate the centripetal acceleration

Using formula of centripetal acceleration

a_{c}=\dfrac{v^2}{r}

a_{c}=\omega^2 r

Put the value into the formula

a_{c}=10^2\times2

a_{c}=200\ m/s^2

We need to calculate the magnitude of acceleration of a point on the  wheel's rim

Using formula of acceleration

a=\sqrt{(a_{t})^2+(a_{c})^2}

a=\sqrt{(40)^2+(200)^2}

a=40\sqrt{26}\ m/s^2

Hence, The magnitude of acceleration of a point on the  wheel's rim is 40\sqrt{26}\ m/s^2

# Learn more

Topic : acceleration of wheel

https://brainly.in/question/12599743

https://brainly.in/question/12119538

Similar questions