Physics, asked by gsreddy239, 6 months ago

the magnitude of gravitational field at a distance 3/2a from the Centre..

a)root3GM/a square

b) 4GM/9a square

c) GM/3a square

d) root3GM/a square

Answers

Answered by BrainlyIAS
58

Question :

The magnitude of a gravitational field at a distance 3/2 a from the center is .....

a. √3 GM / a²

b. 4GM / 9a²

c. GM / 3a²

d. √(3GM) / a²

Solution :

Gravitational field/force at a distance of r from the center is given by ,

\bigstar\ \;  \pink{\textsf{\textbf{F$_\text g$ =\ $\dfrac{\text{GM}}{\text{r$^\text 2$}}$}}}

where ,

  • F₉ denotes Gravitational field
  • G denotes gravitational constant
  • r denotes radius

Gravitational constant = G

Mass of the object = M

Distance from center (r) =  \sf \dfrac{3}{2}a

:\implies \sf F_g=\dfrac{GM}{r^2}

:\implies \sf F_g=\dfrac{GM}{\big(\frac{3}{2}a\big)^2}

:\implies \sf F_g=\dfrac{GM}{\frac{9}{4}a^2}

:\implies \green{\textsf{\textbf{F$_\text{g}$=$\dfrac{\text{4GM}}{\text{9a}^\text{2}}$}}}\ \; \bigstar

Option b

Answered by Anonymous
35

Answer:

  • Option (B) 4GM/9a²

Explanation:

Given that,

  • Distance from center (r) = 3/2 a

As we know that,

\purple \bigstar \:  \:  \bold \orange{ g = \frac{GM}{r^2}}

Where,

  • G = Gravitational constant
  • M = Mass of the object
  • r = Distance from center.

[ Putting values ]

  \leadsto \: \bold{g =  \frac{GM}{( \frac{3}{2}a) {}^{2}  } }

 \leadsto \:  \bold{g =  \frac{GM}{ \frac{9}{4}a {}^{2}  } }

 \leadsto \:  \bold \green{g =  \frac{4GM}{9a {}^{2} } } \:  \:  \red \bigstar

For information:

  • F = GMm/d²
  • F = ma
Similar questions