Physics, asked by masterpunisher, 1 year ago

the magnitude of vector a vector b vector and b vector are respecitively12 ,5and13 unit and a vector + b vector equal C vector then the angle between a vector and b vector is​

Answers

Answered by Anonymous
4

Answer:-

 \mathsf{\theta = 90^{\circ}}

Given :-

\vec{A}= 12\\ \vec{B}= 5 \\ \vec{C}= 13

\mathsf{ \vec{A} + \vec{B} = \vec{C}}

To find :-

The angle between  \text{$\vec{A} $and $\vec{B}$}

Solution:-

  • As we know the addition of two vector is given by formula.

 \mathsf{\vec{A}+\vec{B}= \sqrt{|\vec{A}|^2 +|\vec{B}|^2+ 2 |\vec{A}|.|\vec{B}|Cos \theta}}

But,

\mathsf{ \vec{A} + \vec{B} = \vec{C}}

  • Put the given values,

 \mathsf{\vec{C} = \sqrt{(12)^2 + (5)^2 + 2 \times 12\times 5 Cos \theta}}

 \mathsf{|\vec{c}|= \sqrt{144 + 25 + 120 Cos \theta}}

 \mathsf{(13)^2 = 169 + 120 Cos \theta}

\mathsf{ 169 = 169 + 120 Cos \theta}

 \mathsf{169-169 = 120 Cos \theta}

 \mathsf{0 = 120 Cos \theta}

 \mathsf{Cos \theta = \dfrac{0}{120}}

 \mathsf{Cos \theta = 0 }

\mathsf{Cos \theta = Cos 90^{\circ}}

  • Cancelling out cos.

 \mathsf{\theta = 90^{\circ}}

hence,

The angle between   \vec{A} and  \vec{B} is 90°

Answered by royr04278
1

see this attachment

Attachments:
Similar questions