Math, asked by hafizur0210, 1 year ago

the mark distribution of 30 students in a mathematics examination are given below. Find the mode of this data.

Attachments:

Answers

Answered by rachana20april
15
Here is your answer dear
Attachments:
Answered by anjali1307sl
0

Answer:

The mode of the given data calculated is 52.

Step-by-step explanation:

Data given:

The student's total number = 30

Class interval        Student's number

10-25                              2

25-40                              3

40-55                              7

55-70                              6

70-85                              6

85-100                            6  

To find: The mode of the above data =?

As we know,

  • Mode = L + [\frac{f_{1} - f_{0} }{2f_{1} -f_{0}- f_{2}  } ]\times h

Here,

  • L = Modal class's lower limit
  • h = Class interval's size
  • f_{1} = Modal class's frequency
  • f_{0} = The class prior to the modal class's frequency
  • f_{2} = The class next to the modal class's frequency

Now, from the given data, we have to find out the above values:

Class interval        Student's number( f_{i} )

10-25                              2

25-40                              3       -------f_{0}

40-55                              7       -------f_{1}   ( modal class )

55-70                              6       -------f_{2}

70-85                              6

85-100                            6

As we can see, the maximum number of students ( 7 ) is in the class interval 40-50.

Therefore, modal class is 40-50.

Now,

  • L = 40
  • h = 15
  • f_{1} = 7
  • f_{0} = 3
  • f_{2} = 6

Therefore,

  • Mode = L + [\frac{f_{1} - f_{0} }{2f_{1} -f_{0}- f_{2}  } ]\times h
  • Mode = 40 + [\frac{7 - 3 }{2(7) -3- 6  } ]\times 15
  • Mode = 40 + [\frac{4 }{5  } ]\times 15
  • Mode = 40 +12 = 52

Hence, the mode of the above data is 52.

Similar questions