Math, asked by LoLpro41, 10 months ago

The marks obtained by the students in an examination
of 400 marks is given in the following frequency distribution table. Find the mean
of the distribution.​

Attachments:

Answers

Answered by ramesh4046
8

Answer:

mean = sim of all observations / total num. of observation

= 10+20+30+24+16/5

,! = 90/ 5

= 18

Answered by Anonymous
1

\Large{\underbrace{\underline{\sf{Understanding\: the\: Concept}}}}

Here, this is a question from statistics, where we have to find the mean of the given distribution table.

We have the formula for mean:

\displaystyle\sf\;Mean,\:(\overline{X})=\dfrac{\sum X_iF_i}{\sum F_i}

\rule{380}{2}

The required value for formula of mean can be obtained by following table:

\fbox{\boxed{\begin{array}{c|c|c|c}&&&&\bf{Marks\;}&\bf{Frequency}&\bf{X_1}&\bf{X_iF_i}\\&\sf{(F_i)}&\sf{\dfrac{Upper+lower\: limit}{2}}&&&&\\\cline{1-4}&&&&200-240&10&\dfrac{440}{2}=220&2200&&&&\\\cline{1-4}&&&&240-280&20&\dfrac{520}{2}=260&5200&&&&\\\cline{1-4}&&&&280-320&30&\dfrac{600}{2}=300&900&&&&\\\cline{1-4}&&&&320-360&24&\dfrac{680}{2}=340&3160&&&&\\\cline{1-4}&&&&360-400&16&\dfrac{760}{2}=380&6080&&&&\\\cline{1-4}&&&&\sf{Total}&\sf\sum\;F_i=100&&\sf\sum\;F_i X_i=30,640&&&&\end{array}}}

\rule{380}{2}

From here we have obtained values of:

:\implies \displaystyle\sf\sum X_iF_i

\displaystyle\sf:\implies \sum F_i

Now put these values in the formula:

\displaystyle\sf\;Mean,\:(\overline{X})=\dfrac{\sum X_iF_i}{\sum F_i}

\sf\;Mean,\:(\overline{X})=\dfrac{30,640}{100}

\sf\;Mean,\:(\overline{X})=306.4

∵ So the required mean is 306.4.

\rule{380}{2}

Kindly see this answer on web.

Similar questions