Math, asked by shannure, 1 year ago

the marks obtained in an examination of 400 marks is given in the following frequency distribution table. find the mean of the distribution

Attachments:

Answers

Answered by 13nginx
2

Answer:

303.20

Step-by-step explanation:

 x   -  f   | fx

220-10  | 2200

260-20 | 5200

300-30 | 9000

340-24 | 8160

360-16  | 5760

       ∑f=100

       ∑fx=30320

mean=∑fx/∑f

30320/100

303.20 marks

Answered by Anonymous
1

\Large{\underbrace{\underline{\sf{Understanding\: the\: Concept}}}}

Here, this is a question from statistics, where we have to find the mean of the given distribution table.

We have the formula for mean:

\displaystyle\sf\;Mean,\:(\overline{X})=\dfrac{\sum X_iF_i}{\sum F_i}

\rule{380}{2}

The required value for formula of mean can be obtained by following table:

\fbox{\boxed{\begin{array}{c|c|c|c}&&&&\bf{Marks\;}&\bf{Frequency}&\bf{X_1}&\bf{X_iF_i}\\&\sf{(F_i)}&\sf{\dfrac{Upper+lower\: limit}{2}}&&&&\\\cline{1-4}&&&&200-240&10&\dfrac{440}{2}=220&2200&&&&\\\cline{1-4}&&&&240-280&20&\dfrac{520}{2}=260&5200&&&&\\\cline{1-4}&&&&280-320&30&\dfrac{600}{2}=300&900&&&&\\\cline{1-4}&&&&320-360&24&\dfrac{680}{2}=340&3160&&&&\\\cline{1-4}&&&&360-400&16&\dfrac{760}{2}=380&6080&&&&\\\cline{1-4}&&&&\sf{Total}&\sf\sum\;F_i=100&&\sf\sum\;F_i X_i=30,640&&&&\end{array}}}

\rule{380}{2}

From here we have obtained values of:

:\implies \displaystyle\sf\sum X_iF_i

\displaystyle\sf:\implies \sum F_i

Now put these values in the formula:

\displaystyle\sf\;Mean,\:(\overline{X})=\dfrac{\sum X_iF_i}{\sum F_i}

\sf\;Mean,\:(\overline{X})=\dfrac{30,640}{100}

\sf\;Mean,\:(\overline{X})=306.4

∵ So the required mean is 306.4.

\rule{380}{2}

Similar questions