The mass of a solid cube is 856 g, and each edge has a length of 5.35 cm. Determine the density ρ of the cube in basic SI units.
Answers
Answered by
1
Answer:
Because 1 \mathrm{~g}=10^{-3} \mathrm{~kg}1 g=10
−3
kg and 1 \mathrm{~cm}=10^{-2} \mathrm{~m}, 1 cm=10
−2
m, the mass mm and volume VV in basic SI units are
m=856 \mathrm{~g} \times 10^{-3} \mathrm{~kg} / \mathrm{g}=0.856 \mathrm{~kg}m=856 g×10
−3
kg/g=0.856 kg V =L^{3}=\left(5.35 \mathrm{~cm} \times 10^{-2} \mathrm{~m} / \mathrm{cm}\right)^{3}V=L
3
=(5.35 cm×10
−2
m/cm)
3
=(5.35)^{3} \times 10^{-6} \mathrm{~m}^{3}=1.53 \times 10^{-4} \mathrm{~m}^{3}=(5.35)
3
×10
−6
m
3
=1.53×10
−4
m
3
Therefore,
\rho=\frac{m}{V}=\frac{0.856 \mathrm{~kg}}{1.53 \times 10^{-4} \mathrm{~m}^{3}}=5.59 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}ρ=
V
m
=
1.53×10
−4
m
3
0.856 kg
=5.59×10
3
kg/m
3
Similar questions