Chemistry, asked by jiya579, 6 months ago

the mass of an electron is 9.1 × 10^-31 kg. if its k.e is 3.0 × 10^-25 J, calculate its wavelength. structure of atom.​

Answers

Answered by vishalbanjare14
1

Answer:

follow me and mark me as brilliant and I will follow up u back

Explanation:

its a deal let's do it

Answered by Anonymous
12

Given :-

• Mass of electron = 9.1 × 10⁻³¹ kg.

• Kinetic energy of electron = 3.0 × 10⁻²⁵ J

To Find :-

• Wavelength (λ) of the electron.

Solution :-

 \\

\underline{\:\textsf{ We know that    :}}

 \\

\rm{K.E=\dfrac{1}{2}mv^2}

\rm{v=\left(\dfrac{2K.E}{m}\right)^{1/2}}

 \\

\underline{\:\textsf{ Putting the given values     :}}

 \\

\dashrightarrow \rm{v=\left(\dfrac{2\times{}3.0\times{}10^{-25}\:kgm^2s^{-2}}{9.1\times{}10^{-31}\:kg}\right)^{1/2}}

 \\

\dashrightarrow \rm{v=812\:ms^{-1}}

 \\

\underline{\:\textsf{Using Brogile equation     :}}

 \\

\rm{\lambda=\dfrac{h}{mv}}

 \\

\sf Where

•Planck's constant, h = 6.626 × 10⁻³⁴ Js.

•Mass of electron, m = 9.1 × 10⁻³¹ kg.

 \\

\underline{\:\textsf{ Putting the given values     :}}

 \\

\dashrightarrow \rm{\lambda=\dfrac{6.626\times{}10^{-34}\:kgm^2s^{-1}}{(9.1\times{}10^{-31}\:kg)(812\:ms^{-1})}}

 \\

\dashrightarrow \rm{\lambda=8967\times{}10^{-10}\:m}\:

 \\

\dashrightarrow {\boxed{\frak{\purple{\lambda= 896.7\;nm}}}}\\ \\

 \\

\;\;\underline{\textbf{\textsf{ Hence-}}}

\underline{\textsf{  Wavelength</p><p>\textbf{ 896.7 nm }}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions