Physics, asked by parthshriwas234, 5 months ago

the mass of earth is 6x10^24 kg. the distance between the earth and the sun is 1.5x10^11m if the gravitation force between earth and sun is 3.5x10^22N find mass of the sun . faster plz​

Answers

Answered by SujalSirimilla
17

\huge\star\:\:{\orange{\underline{\pink{\mathbf{REQUIRED \ ANSWER:}}}}}

Use the formula for finding mass of sun.

\boxed{\sf{F = \dfrac{GMm}{R^2}}}

Where:

  • M is mass of the first object - 6x10²⁴ kg
  • m is mass of the second object which we need to find.
  • R is distance between the objects.
  • F is the gravitational force, i.e., 3.5x10²² N
  • G is the gravitational constant.

Substitute these values in the formula.

\to \sf 3.5 \times 10^{22} = \dfrac{6.67 \times 10^{-11} \times 6 \times 10^{24} \times m}{(1.5 \times 10^{11})^2}

\to \sf 3.5 \times 10^{22} = \dfrac{6.67 \times 10^{-11} \times 6 \times 10^{24} \times m}{(1.5 \times 10^{11})(1.5 \times 10^{11})}

\to \sf \dfrac{3.5 \times 10^{22} \times (1.5 \times 10^{11}) \times (1.5 \times 10^{11})}{6.67 \times 10^{-11} \times 6 \times 10^{24} } =m

\to \sf \dfrac{7.875 \times 10^{22} \times  \times 10^{11} \times 10^{11}  \times 10^{-24}  \times 10^{11}}{39.6 } =m

\to \sf \dfrac{7.875 \times 10^{31} }{39.6 } =m

\to \sf 0.1988 \times 10^{31} \ Kg.=m

\to \sf 1.988 \times 10^{30} \ Kg.=m

Mass of sun - 1.988 × 10^30 kg

Attachments:
Similar questions