Science, asked by monikachhetti476, 2 months ago

the mass of the earth is 6×10^24 kg and its radius is 6400 km.calculate the height above the earth's surface at which value of acceleration due to gravity will be 4m/s2.​

Answers

Answered by sidb15
1

 \huge \bold \color{khaki}{ \underline \color{indigo} \mathfrak{Answer }}

g =  \frac{GM_e}{ {R_e}^{2} }

where  \\ g = acceleration \: due \: to \: gravity \\ G = gravitational \: constant \\ M_e = mass \: of \: earth \\ R_e = radius \: of \: earth

g =  \frac{6.67 \times  {10}^{ - 11 \times}  \times 6 \times  {10}^{24} }{( {6 \times  {10}^{5} )}^{2} }  = 9.8m/s

When the object is taken to a height h from the surface of earth,

 {g}^{ \circ}  =  \frac{gm_e}{ {(R_e + h)}^{2} }

 {g}^{ \circ}  =   \frac{GM_e}{ {(R_e(1 +  \frac{h}{R_e})) }^{2} }

 {g}^{ \circ}  =  \frac{g}{( {1 +  \frac{h}{R_e}) }^{2} }

 {g}^{ \circ}  = g( {1 +  \frac{h}{R_e} })^{ - 2}

Applying Binomial Expression,

 {1 + x}^{n}  = 1 + nx \: if \: x <  < 1

 \because \: h <  < R_e \\  \frac{h}{R_e}  <  < 1

 \therefore \:  {g}^{ \circ}  = g(1 -  \frac{2h}{R_e} )

Putting g°= 4 m/s^2, g= 9.8 m/s^2 and Re = 6400000m,

4 = 9.8(1 -  \frac{2h}{6400000} )

2h = 0.74\times  {10}^{ - 3}

 \color{plum}  \boxed { \bold\color{darkgreen} h = 0.37 \times  {10}^{ - 3} m}

 \mathbb{Hope \: it \: Helps... }

Similar questions