The mass of the earth is 6 x 1024 kg and that of an asteroid is 3* 10 kg. 151
If the distance between the earth and the asteroid is 1.2 x 10 km. Calculate the force
exerted by the earth on the asteroid. Given, G = 6.7 * 10-11 Nmkg .
Answers
Explanation:
Given that,
Mass of the Earth {{m}_{1}}=6\times {{10}^{24}}\,Kgm
1
=6×10
24
Kg
Mass of the Moon {{m}_{2}}=7.4\times {{10}^{22}}\,kgm
2
=7.4×10
22
kg
Distance between the Earth and the Moon d=3.84\times {{10}^{5}}\,km=3.84\times {{10}^{8}}\,md=3.84×10
5
km=3.84×10
8
m
Gravitational Constant G=6.7\times {{10}^{-11}}\,N{{m}^{2}}/k{{g}^{2}}G=6.7×10
−11
Nm
2
/kg
2
Now, by using Newton’s law of gravitation
F=\dfrac{G{{m}_{1}}{{m}_{2}}}{{{r}^{2}}} F=
r
2
Gm
1
m
2
F=\dfrac{6.7\times {{10}^{-11}}\times 6\times {{10}^{24}}\times 7.4\times {{10}^{22}}}{{{\left( 3.84\times {{10}^{8}} \right)}^{2}}} F=
(3.84×10
8
)
2
6.7×10
−11
×6×10
24
×7.4×10
22
F=\dfrac{297.48\times {{10}^{35}}}{14.8225\times {{10}^{16}}} F=
14.8225×10
16
297.48×10
35
F=20.069\times {{10}^{19}} F=20.069×10
19
F=20.1\times {{10}^{19}}\,N F=20.1×10
19
N
Hence, the gravitational force of attraction is 20.1\times {{10}^{19}}\,N20.1×10
10 19 sqN
Answer:
hello friends....
Explanation:
i am here and Ur answer is-–—–––·–