Physics, asked by poojitkumarkoribilli, 8 months ago

The mass of the earth is 6X10²4 kg
and that of the moon is 7. 4x10 22 ke
If the distance between the earth
the moon is 3.84 x 105 kg Calculate
the force exerted by the earth
moon (Take G = 67101 Nm 2 Kg - 2)
and
on the​

Answers

Answered by lakshmimaruboyina55
1

Answer:

2.01×10^20N

Explanation:

mass of the earth (M)=6X10²4 kg

mass of the moon(m)=7.4×10^22kg

The distance between the earth and moon is

r=3.84×10^5

=3.84×10^5×1000m

value of G=6.7×10^-11Nm^2kg^-2

force exerted by the earth on the moon

F=GMm/r^2

6.7×10^-11×6×10^24×7.4×10^22

=_________________________

(3.84×10^8)^2

=2.01×10^20N

Answered by Brâiñlynêha
10

Given:-

\bullet\sf Mass \ of \ earth(M_1) = 6\times 10^{24}kg\\ \\ \bullet\sf Mass \ of \ moon (M_2)=7.4\times 10^{22}kg\\ \\ \bullet\sf Distance \ between\ them (R) = 3.84\times 10^5km \ \\ \\ \sf\longrightarrow\sf \ or \ R= 3.84\times 10^{8} m\\ \\ \bullet\sf Gravitional \ constant (G) = 6.7\times 10^{-11}Nm^2/kg^2

To find :-

Force exerted by earth on moon

  • Formula used !

\bigstar{\boxed{\sf F= G\times  \dfrac{M_1\times M_2}{R^2}}}

\longrightarrow\sf F= \dfrac{6.7\times 10^{-11}\times 6\times 10^{24}\times 7.4\times 10^{22}}{(3.84\times 10^8)^2}\\ \\ \\\longrightarrow\sf F= \dfrac{6.7\times 6\times 7.4\times 10^{(-11+24+22)}}{14.7\times 10^{16}}\\ \\  \\ \longrightarrow\sf F= \dfrac{297.48\times 10^{(-11+46)}}{14.7\times 10^{16}}\\ \\ \\\longrightarrow\sf F= \dfrac{297.48\times 10^{45}}{14.7\times 10^{16}}\\ \\ \\ \longrightarrow\sf F= \dfrac{297.48\times 10^{45}\times 10^{-16}}{14.7}\\ \\ \\ \longrightarrow\sf F= \dfrac{\cancel{297.48}\times 10^{(45-16)}}{\cancel{14.7}}\\ \\ \\ \longrightarrow\sf F= 20.23\times 10^{19}\\ \\ \\ \longrightarrow\sf F= 2.02\times 10^{20}N

\underline{\bigstar{\sf\ Force \ Exerted \ by Earth \ on \ Moon  }}

\bigstar{\boxed{\sf F= 2.02\times 10^{20}\ N}}


MOSFET01: Well done keep answering in same pattern
Brâiñlynêha: Thank you :o
Similar questions