Physics, asked by bhumii, 9 months ago

the masses of 2 object a and b are 100 kg and 50kg respectively . if the gravitational force acting between them is 5×10^-8 . calculate the distance between the object​

Answers

Answered by Anonymous
13

Given :

  • Mass of object a = 100 kg
  • Mass of object b = 50 kg
  • Gravitational force acting between them = \sf{5 \times {10}_{-8}}

To find : —

  • The distance between the objects

Solution : —

As we know that, \sf{g = 6.67 \times {10}^{-11}} Nm²/kg²

Using Formula :

 \underline{ \fbox{ \bf{F  = G \dfrac{m_{1}m_{2}}{ {r}^{2} } }}} \\  \\  \rightarrow  \sf{(5 \times  {10}^{ - 8})  = (6.67 \times  {10}^{ - 11}) \dfrac{100 \times 50}{ {r}^{2} }  } \\  \\  \rightarrow \sf{ {r}^{2}  =  \dfrac{6.67 \times  {10}^{ - 11} \times 5000}{5 \times  {10}^{ - 8}} } \\  \\  \rightarrow \:  \sf{ {r}^{2} =  \dfrac{6.67 \times  {10}^{ - 11} \times 5 \times  {10}^{3} }{5 \times  {10}^{ - 8}}}  \\  \\  \rightarrow \:  \sf{ {r}^{2} =  \dfrac{6.67 \times \cancel{ 5 \times  {10}^{ - 8} }}{ \cancel{5 \times  {10}^{ - 8}}}} \\  \\  \rightarrow \:  \sf{ {r}^{2} =  6.67 } \\  \\  \rightarrow \:  \sf{r  =  \sqrt{6.67} } \\  \\ \rightarrow \:  \sf{r = 2.58 \: m}

Hence, the distance between the objects is 2.58 m .

Similar questions