The max, value of sin x + cos x is
Answers
Answered by
0
Answer:
Step-by-step explanation:
Letf(x)=sinx+cosx⟹f′(x)=cosx−sinx
For finding the maximum value of f(x) we equate f′(x)=0
⟹cosx−sinx=0⟹cosx=sinx⟹x=45∘
f′′(x)=−sinx−cosx
f′′(45∘)=−sin45∘−cos45∘=−2–√<0
Hence x = 45∘ is the maxima
f(x)max=(sinx+cosx)max=sin45∘+cos45∘=2–√≈1.4142
Similar questions