Math, asked by jessy27, 3 days ago

the maximum and minimum value of the following function
y =  {4x}^{3}  -  {18x}^{2}  + 24x - 7

Answers

Answered by manaswinreddy1
0

Answer:

14x-19y^5 ok

Step-by-step explanation:

bro understand

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given function is

\bf :\longmapsto\:y = {4x}^{3} - {18x}^{2} + 24x - 7 -  -  - (1)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y =\dfrac{d}{dx}( {4x}^{3} - {18x}^{2} + 24x - 7)

\rm :\longmapsto\:\dfrac{dy}{dx}  =\dfrac{d}{dx}{4x}^{3} - \dfrac{d}{dx}{18x}^{2} +\dfrac{d}{dx} 24x - \dfrac{d}{dx}7

We know that

 \red{\boxed{ \sf \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}

and

 \red{\boxed{ \sf \: \dfrac{d}{dx}k =  0}}

So, using these results we get

\bf :\longmapsto\:\dfrac{dy}{dx} =  {12x}^{2} - 36x + 24 -  -  - (2)

For maxima or minima,

\rm :\longmapsto\:\dfrac{dy}{dx} = 0

\rm :\longmapsto\: {12x}^{2} - 36x + 24 = 0

\rm :\longmapsto\: 12({x}^{2} - 3x + 2) = 0

\rm :\longmapsto\: {x}^{2} - 3x + 2= 0

\rm :\longmapsto\: {x}^{2} - 2x - x + 2= 0

\rm :\longmapsto\:x(x - 2) - 1(x - 2) = 0

\rm :\longmapsto\:(x - 2)(x - 1) = 0

\bf\implies \:x = 2 \:  \:  \: or \:  \:  \: x = 1

Now, from equation (2),

\rm :\longmapsto\:\dfrac{dy}{dx} =  {12x}^{2} - 36x + 24

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } = \dfrac{d}{dx}( {12x}^{2} - 36x + 24 )

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } = \dfrac{d}{dx}{12x}^{2} - \dfrac{d}{dx}36x + \dfrac{d}{dx}24

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } = 24x - 36

Now, Consider x = 1

\rm :\longmapsto\:\bigg[\dfrac{ {d}^{2} y}{d {x}^{2} }\bigg]_{x = 1} = 24 - 36 =  - 12 < 0

\bf\implies \:y \: is \: maximum \: at \: x = 1

and

\rm :\longmapsto\:Maximum \: value = 4 - 18 + 24 - 7 = 3

Now Consider x = 2

\rm :\longmapsto\:\bigg[\dfrac{ {d}^{2} y}{d {x}^{2} }\bigg]_{x = 2} = 48 - 36 = 12  > 0

\bf\implies \:y \: is \: minimum \: at \: x = 2

and

\rm :\longmapsto\:Manimum \: value = 4 {(2)}^{3} - 18 {(2)}^{2}  + 24(2) - 7

\rm :\longmapsto\:Manimum \: value = 32 - 72  + 48 - 7 = 1

 \red{\rm :\longmapsto\:\begin{gathered}\begin{gathered}\bf\: Hence-\begin{cases} &\sf{Maximum \: value = 3} \\ &\sf{Minimum \: value = 1} \end{cases}\end{gathered}\end{gathered}}

Basic Concept Used :-

Let y = f(x) be a given function.

To find the maximum and minimum value, the following steps are follow :

1. Differentiate the given function.

2. For maxima or minima, put f'(x) = 0 and find critical points.

3. Then find the second derivative, i.e. f''(x).

4. Apply the critical points ( evaluated in second step ) in the second derivative.

5. Condition :-

The function f (x) is maximum when f''(x) < 0.

The function f (x) is minimum when f''(x) > 0.

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) &amp; \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf 0 \\ \\ \sf sinx &amp; \sf cosx \\ \\ \sf cosx &amp; \sf  -  \: sinx \\ \\ \sf tanx &amp; \sf  {sec}^{2}x \\ \\ \sf cotx &amp; \sf  -  {cosec}^{2}x \\ \\ \sf secx &amp; \sf secx \: tanx\\ \\ \sf cosecx &amp; \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  &amp; \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx &amp; \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  &amp; \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions