The maximum and minimum values of the function y = x3 - 3x2 +6 what ia the procedure
Answers
Answered by
18
Answer:
y=x³-3x²+6
dy/dx=3x²-6x
for max or min values,
dy/dx =0
3x²-6x=0
x(3x-6)=0
x=0,2
d²y/dx²=6x-6
let x=0,
d²y/dx²=-6(-ve)
so, fx is max at x=0
let, x=2,
d²y/dx²=6(+ve)
so, fx is min at x=2,
maximum value=x³-3x²+6
put x=0,
max value=6
min value,
put x=2,
min value=8-12+6=2
Similar questions