Math, asked by padmanishita, 10 months ago

The maximum length of a rod that can be kept in a cuboidal box of dimension 12cm x 9 cm x 8 cm is

Answers

Answered by sainaditya36
1

Answer:

total surface area=2(length×breadth)+(breadth×height)+(height×length)

TSA=2(12×9)+(9×8)+(8×12)

TSA=2(108)+(72)+(96)

TSA=2(276)

TSA=552 ans

Answered by Sudhir1188
13

Answer:

17 cm

GIVEN:

l (length) = 12cm

b ( breadth) = 9cm

h ( height) = 8cm

To find:

The maximum length of a rod that can be kept in a cuboidal box of dimension 12cm x 9 cm x 8 cm .

SOLUTION:

l = 12cm \\  \\ b = 9cm \\  \\ h = 8cm \\  \\ the \: maximum \: length \: of \: the \: rod \: is \: \: the \:  \\ diagonal \: of \: cuboid. \\  \\ diagonal \: of \: cuboid \:  =   \sqrt{l {}^{2} + b {}^{2}  + h {}^{2}  }  \\  \\ now \: putting \: the \: values \: we \: get \\  \\  \\  \\  =  \sqrt{12 {}^{2}  + 9 {}^{2}  + 8 {}^{2} }  \\  \\  =  \sqrt{144 + 81 + 64}  \\  \\   = \sqrt{289}  \\  \\  = 17 \:  cm \\  \\ the \: maximum \: length \: of \: rod \:  = 17 \: cm

Similar questions