the maximum number of electrons can be accommodated in n shell of an atom is
Answers
The maximum number of electrons which can be accommodated in 'N' shell of an atom is 50.
Answer:
The maximum number of electrons present in a shell is given by the formula
2
n
2
, where ‘n’ is the orbit number or energy level index, 1,2,3,….
Hence the maximum number of electrons in different shells are as follows:
first orbit or K-shell will be = 2 × 12 = 2,
second orbit or L-shell will be = 2 × 22 = 8,
third orbit or M-shell will be = 2 × 32 = 18,
fourth orbit or N-shell will be = 2 × 42= 32, and so on.
The maximum number of electrons that can be accommodated in the outermost orbit is 8.
Explanation:
An electron is a negatively charged subatomic particle that can be either bound to an atom or free (not bound). An electron that is bound to an atom is one of the three primary types of particles within the atom -- the other two are protons and neutrons.
Together, electrons, protons and neutrons form an atom's nucleus. A proton has a positive charge that counters the electron's negative charge. When an atom has the same number of protons and electrons, it is in a neutral state.
Electrons are unique from the other particles in multiple ways. They exist outside of the nucleus, are significantly smaller in mass and exhibit both wave-like and particle-like characteristics. An electron is also an elementary particle, which means that it is not made up of smaller components. Protons and neutrons are thought to be made up of quarks, so they are not elementary particles.
Shells, subshells and orbitals
In the early days of atomic study, scientists believed that an atom's electrons circled the nucleus in spherical orbits at specific distances, much like planets circle a sun. In this model -- referred to as the Bohr model -- the orbits furthest from the nucleus contain the greatest amount of energy. When an electron jumps from a higher energy orbit to a lower energy orbit, the atom releases electromagnetic radiation.
electron
Electrons are negatively charged subatomic particles.
The Bohr model is no longer thought to be accurate, particularly as it pertains to how the electrons orbit the nucleus. While the model can still be useful in understanding the basics of electron distribution and different energy levels, it fails to consider the complexity of that distribution and how electrons inhabit the space around the nucleus, according to current quantum theory.
https://brainly.in/question/6409954
#SPJ3