Math, asked by manjubora6044, 1 year ago

The maximum number of equivalence relations on set A {1,2,3} are?

Answers

Answered by ranjanalok961
7
Consider the relation R1={(1,1)}It is clearly reflexive, symmetric and transitiveSimilarly, R2={(2,2)} and R3={(3,3)} are reflexive, symmetric and transitiveAlso, R4={(1,1),(2,2),(3,3),(1,2),(2,1)}It is reflexive as (a,a)∈R4 for all a∈{1,2,3}It is symmetric as (a,b)∈R4⇒(b,a)∈R4 for all a∈{1,2,3}Also, it is transitive as (1,2)∈R4,(2,1)∈R4⇒(1,1)∈R4The relation defined by R5={(1,1),(2,2),(3,3),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)} is reflexive, symmetric and transitive as well.
Thus, the maximum number of equivalence relation on set A={1,2,3} is 5.
Similar questions