Math, asked by puneethnagaraj2046, 10 months ago

the maximum value of cos^6 X +sin^6 X is

Answers

Answered by saounksh
12

Answer:

Maximum value of cos⁶(x) + sin⁶(x) is 1.

Step-by-step explanation:

 \sin {}^{6} (x)   +  \cos {}^{6} (x)

  =  {( \sin {}^{2} (x) )}^{3}  + {( \cos {}^{2} (x) )}^{3}

Using the Identity

 {a}^{3} +  {b}^{3}   =  {(a + b)}^{3}  - 3ab(a + b)

we get

 =  { (\sin {}^{2} (x)  + \cos {}^{2} (x) ) }^{3}  - 3 \sin {}^{2} (x)  \cos {}^{2} (x) ((\sin {}^{2} (x)  + \cos {}^{2} (x))

 =  {1}^{3}  - 3 \sin {}^{2} (x)  \cos {}^{2} (x).1

 = 1 -  \frac{3}{4}  {(2 \sin(x) \cos(x))  }^{2}

 = 1 -  \frac{3}{4}  {( \sin(2x) )}^{2}

 = 1 -  \frac{3}{4}  \sin {}^{2} (2x)

Since

 - 1 \leqslant  \sin(2x)  \leqslant 1

or \: 0 \leqslant  \sin {}^{2} (2x) \leqslant 1

or \: 0 \leqslant  \frac{3}{4 }  \sin {}^{2} (2x) \leqslant  \frac{3}{4}

or \: 0 \geqslant  -  \frac{3}{4}  \sin {}^{2} (2x)  \geqslant  -  \frac{3}{4}

or \: 1 \geqslant 1 -  \frac{3}{4}  \sin {}^{2} (2x)  \geqslant 1 -  \frac{3}{4}

or \:  \frac{1}{4}  \leqslant 1 -  \frac{3}{4}  \sin {}^{2} (2x)  \leqslant 1

 \:  \frac{1}{4}  \leqslant  \ \cos {}^{6} (x)   +  \sin {}^{6} (x)  \leqslant 1

Therefore,Maximum and minimum value of cos⁶(x) + sin⁶(x) are 1 and 1/4 respectively.

Answered by dhanush958195
0

Answer:

the range of sin⁶ x +. cos⁶ x is

Similar questions