The maximum value of sin(x+π/5)+ cos(x+π/5) is attained at ?
Answers
Answered by
14
We have to find the value of such that .
Rewrite the given function noting that ,
[tex]f(x)=\sqrt{2}[ \frac{1}{\sqrt{2} } \sin(x+\frac{\pi}{5} )+ \frac{1}{\sqrt{2} } \cos(x+\frac{\pi}{5} )]\\ f(x)=\sqrt{2}[\cos(\frac{\pi}{4} ) \sin(x+\frac{\pi}{5} )+\sin(\frac{\pi}{4} ) \cos(x+\frac{\pi}{5} )][/tex].
[tex]f(x)=\sqrt{2} \sin(x+\frac{\pi}{5}+\frac{\pi}{4} )\\ f(x)=\sqrt{2} \sin(x+\frac{9\pi}{20} )[/tex].
We can see that is maximum when is maximum that is when
[tex]x+\frac{9\pi}{20}=\frac{\pi}{2}\\ x=\frac{\pi}{2}-\frac{9\pi}{20}\\ x=\frac{\pi}{20}[/tex].
Similar questions
English,
7 months ago
Computer Science,
7 months ago
Math,
7 months ago
Social Sciences,
1 year ago
Economy,
1 year ago
Biology,
1 year ago