Math, asked by bublu7941, 11 months ago

The maximum value of slope of the curve y=-x³ + 3x²+12x - 5 is

Answers

Answered by sanjeevk28012
9

The maximum value of slope will be - 0.16

Step-by-step explanation:

Given as :

The curve equation is

 y = -  x³  + 3  x² + 12  x  - 5

For maximum value of slope of the curve

we make slope =  \dfrac{dy}{dx}   should be   0

The equation of a slope at evry popint , or let it be a fuction which tells slope at any point .

So,  Differentiate y with respect to x

Or,  \dfrac{d(-x^{3} + 3x^{2} +12 x -5)}{dx}   = 0

Or,   \dfrac{d(-x^{3} )}{dx} + 3 \dfrac{dx^{2} }{dx}  + 12 \dfrac{dx}{dx} + \dfrac{d(-5)}{dx}  = 0

Or,  - 3 x²  + 3 ( 2 x ) + 12 ( 1 ) + 0 = 0

Or,   - 3 x²  + 6 x  + 12  + 0 = 0

Taking - 3 as common

i.e     - 3 ( x²  - 2 x -  4 )  = 0

Or,    ( x²  - 2 x  - 4 )  = 0

Solving this quadratic equation as form of a x²  + b x  + c = 0

       x = \dfrac{2\pm \sqrt{4-4\times 1\times (-4)}}{2\times 1}

i.e     x = \dfrac{2\pm \sqrt{20}}{2}

Or,     x = 3.2  ,  - 1.2

Again

        \dfrac{d{2}y }{dx^{2} }   = \dfrac{d(x^{2} -2 x -4)}{dx}

                 = \dfrac{dx^{2} }{dx}  - 2 \dfrac{dx}{dx} - \dfrac{d(4)}{dx}

                 = 2 x - 2

 ∵     \dfrac{d{2}y }{dx^{2} } = 0

So,     2 x - 2  = 0

Or,      2 x = 2

∴            x = \dfrac{2}{2}

i.e           x = 1

So, The maximum value of slope will be at x = 3.2

So, slope = \dfrac{dy}{dx}  is maximum at x = 3.2

i.e           slope  =  (3.2)²  - 2 (3.2)  - 4

                         = 10.24 - 6.4 - 4

                          = - 0.16

So, The maximum value of slope = - 0.16

Hence, The maximum value of slope will be - 0.16  Answer

Answered by vijendersingh0118
3

Answer:

Step-by-step explanation:

Attachments:
Similar questions