The maximum value of the function 4 cosx+3 sinx+20 *
25
27
30
45
Answers
Answer:
25
Step-by-step explanation:
y= 4cosx + 3sinx
y/5= sin(a+x)
where a= sin^-1 4/5
now maximum value if sin is 1
thus y/5 max = 1
y= 5
Thus maximum value of the given function is 5+20 which is 25
Given : 4 cosx + 3 sinx + 20
To Find : maximum value of the function
Solution:
f(x) = 4 cosx + 3 sinx + 20
f'(x) = -4sinx + 3Cosx
f'(x) = 0
=> -4sinx + 3Cosx = 0
=> 4sinx = 3cosx
=> tanx = 3/4
Sinx , cosx = 3/5 , 4/5 respectively
or -3/5 , -4/5 respectively
f''(x) = -4cosx - 3sinx
Sinx , cosx = 3/5 , 4/5
=> f''(x) < 0 hence maximum value when Sinx = 3/5 , cosx = 4/5
f(x) = 4 cosx + 3 sinx + 20
= 4(4/5) + 3(3/5) + 20
= 25/5 + 20
= 5 + 20
= 25
minimum value when Sinx = -3/5 , cosx = -4/5
= 4(-4/5) + 3(-3/5) + 20
= -5 + 20
= - 15
maximum Value = 25
Learn More:
5sinx+12cosx find the maximum value - Brainly.in
https://brainly.in/question/162706
Find the extreme values of 3sin^2x+5cos^2x - Brainly.in
https://brainly.in/question/15274408