Math, asked by bobbasatyanarayana81, 1 month ago

the maximum value of x^2+4x+1/x^2+x+1 are​

Answers

Answered by senboni123456
0

Step-by-step explanation:

Let,

y =  \frac{ {x}^{2}  + 4x + 1}{ {x}^{2} + x + 1 }  \\

 \implies \: y( {x}^{2}   + x + 1)=  {x}^{2}  + 4x + 1  \\

 \implies \:( y - 1) {x}^{2}   +(y - 4) x + (y - 1)= 0  \\

 \forall \: x  \in \:\real, \: D \geqslant 0

Also, y ≠ 1

So,

(y - 4)^{2}   - 4(y - 1) ^{2}   \geqslant 0

 \implies(y - 4)^{2}   - \{ 2(y - 1)  \}^{2}   \geqslant 0 \\

 \implies\{y - 4   - 2(y - 1)  \} \{y - 4 + 2(y - 1) \} \geqslant 0 \\

 \implies\{y - 4   - 2y  +  2  \} \{y - 4 + 2y -2 \} \geqslant 0 \\

 \implies( - y -2 ) (3y - 6) \geqslant 0 \\

 \implies( y  + 2 ) (y - 2) \leqslant 0 \\

 \implies \: y   \in  [  - 2,2 ]

Similar questions