Math, asked by anshszar869, 10 months ago

the mean (3x-1),(2x-3),(x+7),(1x+1) and (x+3)is 19. find the value of x​

Answers

Answered by Anonymous
62

Given :-

  • Mean of 5 digits is 19

  • Digits are (3x-1),(2x-3),(X+7),(X+1) and (X+3)

To Find:-

  • Value of X .

Solution :-

Formula -

\boxed{\sf{\implies Mean = \dfrac{ Sum\ of\ digits}{number\ of\ digits } }}\\

Using the above mentioned formula

\sf{\implies Mean = \dfrac{ Sum\ of\ digits}{number\ of\ digits } }\\

\sf{\implies 19 = \dfrac{ (3x-1)+(2x-3)+(x+7)+(1x+1)+ (x+3)}{5} }\\

\sf{\implies 19 = \dfrac{ 3x-1+2x-3+x+7+x+1+ x+3}{5} }\\

\sf{\implies 19 = \dfrac{ (8x + 11 - 4 }{5} }\\

\sf{\implies 19 \times 5= 8x + 7 }\\

\sf{\implies 95 - 7 = 8x  }\\

\sf{\implies 88 = 8x }\\

\sf{\implies X = \dfrac{88}{8} \rightarrow 11  }\\

\boxed{\sf{\implies X = 11  }}\\

Answered by sethrollins13
23

✯✯ QUESTION ✯✯

The mean (3x-1),(2x-3),(x+7),(1x+1) and (x+3)is 19. find the value of x..

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

  • (3x-1) (2x-3) (x+7) (1x+1) and (x+3)
  • Mean = 19
  • Total No. of Observations = 5

Using Formula : -

\implies\tt{\small{\boxed{\bold{\bold{\blue{\sf{Mean=\dfrac{Sum\:of\:all\:observations}{Total\:No.\:of\:Observations}}}}}}}}

Putting Values : -

\implies\tt{19=\dfrac{3x-1+2x-3+x+7+1x+1+x+3}{5}}

\implies\tt{19=\dfrac{3x+2x+x+x+x-1-3+7+1+3}{5}}

\implies\tt{19=\dfrac{8x-1-3+7+1+3}{5}}

\implies\tt{19=\dfrac{8x+7}{5}}

Now ,

\implies\tt{1(8x+7)=19\times{5}}

\implies\tt{8x+7=95}

\implies\tt{8x=95-7}

\implies\tt{8x=88}

\implies\tt{x=\cancel\dfrac{88}{8}}

\red\longmapsto\:\large\underline{\boxed{\bf\green{x}\orange{=}\purple{11}}}

So , The value of x is 11...

Similar questions