Math, asked by smartaravind296, 5 months ago

the mean and median of the data x+a,x+b,x+c are equal and a<b<c then find the value of a and b​

Answers

Answered by SujalSirimilla
0

\LARGE{\bf{\underline{\underline{GIVEN:-}}}}

  • We are given three values, x+a, x+b, x+c where a < b < c.

\LARGE{\bf{\underline{\underline{TO \ FIND:-}}}}

  • The value of a and b.

\LARGE{\bf{\underline{\underline{SOLUTION:-}}}}

Arrange the terms in ascending or descending order, but for us, it is already arranged.

In the given data x+a, x+b, x+c, we can find mean:

\boxed{\sf{\green{\overline{x}=\dfrac{Sum \ of \ terms}{Number \ of \ terms} }}}

According to the above data, mean:

\sf \to \overline{x}=\dfrac{x+a+x+b+x+c}{3}

\sf \to \overline{x}=\dfrac{3x+a+b+c}{3}

Now median is the "middle most term" of the given sequence. The middle most term in x+a, x+b, x+c is x+b. Therefore, median is x+b.

It is given that:

\red\bullet \sf Median=Mode

Therefore,

\sf \to x+b=\dfrac{3x+a+b+c}{3}

\sf \to 3x+3b=3x+a+b+c

\sf \to 2b=a+c

\leadsto \sf{\red{b=\dfrac{a+c}{2} }}

Now, finding a is simple. Use the same equation:

\sf \to x+b=\dfrac{3x+a+b+c}{3}

\sf \to 3x+3b=3x+a+b+c

\sf \to 3b=a+b+c

Here rearrange the terms.

\sf \to -a=-3b+b+c

\sf \to a=-(-3b+b+c)

\to \sf a=3b-b-c

\leadsto \sf{\red{a=2b-c}}

Therefore,

★ a = 2b - c.

★ b = (a+c)/2

Similar questions