Math, asked by lalassp931, 8 months ago

The mean and standard deviation of a population are 11,795 and 14054 respectively. If n=50 ,find 95% confidence
interval for the mean.

Answers

Answered by anushatenneti18
8

Answer:

Step-by-step explanation:

Here mean of population , mu = 11795

S.D of population , sigma = 1405

x bar = 11795

n = sample size = 50 , maximum error = Z alpha by 2 x sigma by root n

Z alpha by 2 for 95%  confidence = 1.96

Max. error, E = Z alpha by 2 x sigma/ root n = 1.96 x 14054/ root of(50) = 3899

Therefore,  Confidence interval = ( x bar - z alpha by 2 . sigma / root n , x bar + Z alpha by 2 . sigma / root n

=(11795 - 3899, 11795 + 3899)

=(7896, 15694)

Answered by mahajan789
2

Given, the mean of the  population \mu = 11795

the standard deviation \sigma = 14054

Sample size n = 50

Maximum error E = Z_{\alpha/2}\frac{\sigma}{\sqrt{n} }

Now,Critical value Z_{\alpha/2} for 95% confidence = 1.96

\therefore E = 1.96\frac{14054}{\sqrt{50} }= 3893.075

Confidence Interval = (\bar{x}-z \frac{\sigma}{\sqrt{n}})  to (\bar{x}+z \frac{\sigma}{\sqrt{n}})

                                 =(11795-3893.075) to (11795+3893.075)

                                 = (7901.92,15688.08)

#SPJ3

Similar questions