The mean and variance of 7 observations are 8 and 16 respectively.If 5 of the observations are 2,4,10,12,14.Find the remaining two observations
Answers
Answer:
The Remaining 2 observations = 6 and 8
Step-by-step explanation:
Given,
Mean (= 8
Variance = 16
No. of observations = 7
Let the remaining two observations = x and y
∴ Observations = 2, 4, 10, 12, 14, x, y
Since,
Mean =
⇒ 8 =
⇒ 56 = 42 + x + y
⇒ x + y = 56 - 42
⇒ x + y = 14 equation ( i )
and
Variance = ∑()
⇒ 16 = [( -6 )² + ( -4 )² + ( 2 )² + ( 4 )² + ( 6 )² + x² + y² - 2 × 8 ( x + y ) + 2 × ( 8 )² ]
⇒ 16 × 7 = 36 + 16 + 4 + 6 + 36 + x² + y² - 16 ( x + y ) + 2 ( 64 )
⇒ 112 = 108 + x² + y² - 16 ( 14 ) + 128
⇒ x² + y² = 112 - 108 + 224 - 128
⇒ x² + y² = 100 equation ( ii )
Squaring equation ( i ), we obtain
⇒ ( x + y )² = ( 14 )²
⇒ x² + y² + 2xy = 196
⇒ x² + y² = 196 - 2xy equation ( iii )
From equation ( ii ) and ( iii )
⇒ 196 - 2xy = 100
⇒ 2xy = 196 - 100
⇒ 2xy = 96 equation ( iv )
Subtract equation ( iv ) from equation ( ii )
⇒ x² + y² - 2xy = 100 - 96
⇒ ( x - y )² = 4
⇒ x - y = ± 2
Now,
When x - y = 2
∴ x = 8 and y = 6
When x - y = - 2
∴ x = 6 and y = 8
Therefore,
The Remaining 2 observations = 6 and 8