Math, asked by sarfrazshaikh06828, 4 months ago

the mean deviation about mean of the digits 1,2,3,4,5,6,7,8,9​

Answers

Answered by jhariyaa
0

SolutioN :-

_______

Let the sides of triangle be 13x , 14x and 15x

Then , the perimeter of triangle = 13x + 14x + 15x

But , it is given that perimeter = 84

So , 13x + 14x + 15x = 84

 \small{ \sf \:  \implies \: 42x = 84}

\small{ \sf \:  \implies \:x =  \frac{84}{42}  }

\small{ \sf \:  \implies \:x = 2 }

 \boxed{ \mathrm{x = 2}}

Let the first side be a , second side b and third side be c of a triangle.

Then , by putting the value of x

  • a = 13x = 13 × 2 = 26
  • b = 14x = 14 × 2 = 28
  • c = 15x = 15 × 2 = 30

Now ,

By using Heron's formula , we have

 \boxed{\sf \small \: area =  \sqrt{s(s - a)(s - b)(s - c)} }

Where ,

  •  \sf {s =  \frac{perimeter}{2} }
  • a, b, c are the three sides of triangle.

By putting their values ,

 \small\sf{area \: of  \: \triangle =  \sqrt{ \frac{84}{2}( \frac{84}{2}  - 26)( \frac{84}{2}  - 28) ( \frac{84}{2} - 30 )} }

 \small \sf{ \implies \: area \: of \:  \triangle =  \sqrt{42(42 - 26)(42 - 28)(42 - 30)} }

\small \sf{ \implies \: area \:of  \:  \triangle =  \sqrt{42(16)(14)(12)} }

 \small \sf{ \implies \: area \: of  \:  \triangle =  \sqrt{42 \times 16 \times 14 \times 12} }

 \small \sf{ \implies \: area \: of  \:  \triangle =  \sqrt{112896}  }

 \small \sf{ \implies \: area \: of  \:  \triangle =  {336 \: cm}^{2}   }

Therefore, area of triangle = 336m²

Similar questions