Math, asked by damanrajput129, 9 months ago

the mean is 42 find the missing frequency of X and y if the total frequency is 100.
class interval 0-10, 10-20 ,20-30, 30-40 ,40-50 ,50-60 ,60-70, 70-80
frequency 7, 10, X ,13, y, 10, 14, 9​

Answers

Answered by mddilshad11ab
148

\sf\large\undeline{Given:}

\sf{\implies Mean=42}

\sf{\implies Total frequency=100}

\sf\large\undeline{To\:Find:}

  • The value of missing frequency=?]

\sf\large\undeline{Solution:}

  • To calculate the missing frequency at first we have to make a table after that we have to calculate the value of x and y to calculate the value of x and y , we have to set up equation then solve.]

\begin{array}{|c|c|c|c|} \cline{1-4} \sf CI & \sf f & \sf x & \sf fx \\ \cline{1-4} 0-10 & 7 & 5 & 35 \\ \cline{1-4} 10-20 & 10 & 15 & 150 \\ \cline{1-4} 20-30 & \sf X & 25 & \sf 25X \\ \cline{1-4} 30-40 & 13 & 35 & 455 \\ \cline{1-4} 40-50 & \sf Y & 45 & \sf 45Y \\ \cline{1-4} 50-60 & 10 & 55 & 550 \\ \cline{1-4} 60-70 & 14 & 65 & 910 \\ \cline{1-4} 70 - 80 & 9 & 75 & 675 \\ \cline{1-4} & \sf \sum\:f=63 + X + Y & & \sf \sum\:f\:x=2775 + 25X + 45Y \\ \cline{1-4} \end{array}

By calculating we get here:]

\sf{\implies \sum\:f\:x=2775+25x+45y}

\sf{\implies \sum\:f=63+x+y}

\sf{\implies setting\:up\: first\: equation:}

\sf{\implies Total\: frequency=63+x+y}

\sf{\implies 100=63+x+y}

\sf{\implies x+y=100-63}

\sf{\implies x+y=37-------(i)}

\sf{\implies setting\:up\:2nd\: equation:}

  • To calculate 2nd equation we have to apply the formula of mean:]

\tt{\implies Mean=\dfrac{\sum\:f\:x}{\sum\:f}}

\tt{\implies 42=\dfrac{2775+25x+45y}{63+x+y}}

\tt{\implies 2646+42x+42y=2775+25x+45y}

\tt{\implies 42x-25x+42y-45y=2775-2646}

\tt{\implies 17x-3y=129----(ii)}

Now solving here , equation:]

  • In eq (I) multiplying by 17 the subtracting from eq (ii)

\tt{\implies 17x+17y=629}

\tt{\implies 17x-3y=129}

  • By solving we get , here]

\tt{\implies 20y=500\implies y=25}

  • Putting the value of y=25 in eq (i)]

\sf{\implies x+y=37}

\sf{\implies x+25=37}

\sf{\implies x=37-25\implies x=12}

\sf\large{Hence,}

\sf\purple{\implies The\: missing\: frequency=25\:and\:12}


TheMoonlìghtPhoenix: Great!
mddilshad11ab: thanks bro
Vamprixussa: Fabulous !
mddilshad11ab: thanks sis
Anonymous: Nice :)
mddilshad11ab: thanks sis
Answered by Anonymous
83

Answer:

\boxed{\begin{array}{ccccc}\sf Class\: interval&\sf Frequency&\sf Class\:marks&\sf f_i\:x_i\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf 0-10&\sf 7&\sf5&\sf 35 \\\\\sf 10-20 &\sf 10&\sf 15 &\sf 150 \\\\\sf 20-30 &\sf x &\sf 25 &\sf 25x\\\\\sf 30-40&\sf 13&\sf 35&\sf 455\\\\\sf 40-50 &\sf y &\sf 45&\sf 45y \\\\\sf 50-60 &\sf 10 &\sf 55 &\sf 550\\\\\sf 60-70 &\sf 14 &\sf 65&\sf 910 \\\\\sf 70-80 &\sf 9 &\sf 75&\sf 675\\\frac{\qquad\qquad \qquad   \qquad}{}&\frac{\qquad \qquad \qquad\qquad \qquad}{}&\frac{\qquad \qquad \qquad}{}&\frac{\qquad \qquad\qquad \qquad \qquad \qquad \qquad\qquad}{}\\\\\sf Total &\sf \sum\:f_i=63+x+y &\sf &\sf \sum f_i\:x_i=2775+25x+45y\end{array}}

\rule{130}{1}

Sum of Frequencies = 100

:\implies\sf \sum i \ fi= 100\\\\\\:\implies\sf 63+x+y =100\\\\\\:\implies\sf x+y = 100-63\\\\\\:\implies\sf x+y= 37\\\\\\:\implies\sf x= 37-y\:\:\:\Bigg\lgroup\bf{Equation\:(1)}\Bigg\rgroup

\rule{170}{2}

Now, the mean of the given data is given by,

\dashrightarrow\sf\:\:x = \dfrac{\sum\limits_i\:fi\:xi}{\sum\limits_i\:fi}\\\\\\\dashrightarrow\sf\:\:42 = \dfrac{2775+25x+45y}{100}\\\\\\\dashrightarrow\sf\:\:4200-2775= 25x + 45y\\\\\\\dashrightarrow\sf\:\:1425= 25(37-y) +45y\:\:\:\Bigg\lgroup\bf{From\: Equation\:(1)}\Bigg\rgroup\\\\\\\dashrightarrow\sf\:\:1425 = 925 - 25y + 45y\\\\\\\dashrightarrow\sf\:\:1425 - 925 = -25y + 45y\\\\\\\dashrightarrow\sf\:\:500= 20y\\\\\\\ \dashrightarrow\sf\:\:y = \dfrac{550}{20}\\\\\\\dashrightarrow\:\:\underline{\boxed{\sf y = 25}}

\rule{130}{1}

\begin{lgathered}\bullet\:\:\textsf{y = \textbf{25}}\\\\\bullet\:\:\textsf{x = 37 - y = 37 - 25 = \textbf{12}}\end{lgathered}

\therefore\:\underline{\textsf{The value of x and y is  \textbf{12 and 25 respectively}}}.


Vamprixussa: Awesome !
TheMoonlìghtPhoenix: Great!
Similar questions