Math, asked by hamidumar46, 3 months ago



The mean is nine numbers is 77. If one more number is added to it then the mean increases
by 5. Find the number added in the data.


Answers

Answered by Anonymous
28

As We know that the mean of nine numbers is 77 so that :-

 \circ \ {\pmb{\underline{\boxed{\sf{ ( \overline{x} ) = \dfrac{x_1,x_2 \cdots x_n}{n} }}}}} \\ \\ \\ \colon\implies{\sf{ 77 = \dfrac{x_1,x_2 \cdots x_9}{9} }} \\ \\ \\ \colon\implies{\sf{ 693 = ( x_1,x_2 \cdots x_9) \ \ \ \ \ \cdots(1) }} \\

Now, If one more number is added to it then the mean increases by 5 as:

Let that number be x

 \colon\implies{\sf{ 77+5 = \dfrac{(x_1,x_2 \cdots x_9)+x}{9+1} }} \\ \\ \\ \colon\implies{\sf{ 82 = \dfrac{(x_1,x_2 \cdots x_9)+x}{10} }} \\ \\ \\ \colon\implies{\sf{ 820 = (x_1,x_2 \cdots x_9)+x }} \\ \\ \\ \colon\implies{\sf{ 820 = 693+x \ \ \ \ \ \pink{[From \ Equation \ (1)]} }} \\ \\ \\ \colon\implies{\sf{ 820 - 693 = x }} \\ \\ \\ \colon\implies{\underline{\boxed{\sf{ x = 127 }}}} \\

Hence,

 \\ {\pmb{\underline{\sf\red{ The \ number \ that \ was \ added \ in \ the \ data \ is \ 127. }}}}

Similar questions